Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Immune Network ; : e7-2021.
Article in English | WPRIM | ID: wpr-874617

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 has severely impacted global health and economy. There is currently no effective approved treatment for COVID-19; although vaccines have been granted emergency use authorization in several countries, they are currently only administered to high-risk individuals, thereby leaving a gap in virus control measures. The scientific and clinical communities and drug manufacturers have collaborated to speed up the discovery of potential therapies for COVID-19 by taking advantage of currently approved drugs as well as investigatory agents in clinical trials. In this review, we stratified some of these candidates based on their potential targets in the progression of COVID-19 and discuss some of the results of ongoing clinical evaluations

2.
Immune Network ; : e31-2020.
Article | WPRIM | ID: wpr-835453

ABSTRACT

The effectiveness of current influenza vaccines is considered suboptimal, and 1 way to improve the vaccines is using adjuvants. However, the current pool of adjuvants used in influenza vaccination is limited due to safety concerns. Aloe vera, or aloe, has been shown to have immunomodulatory functions and to be safe for oral intake. In this study, we explored the potential of orally administered processed Aloe vera gel (PAG) as an adjuvant for influenza vaccines in C57BL/6 mice. We first evaluated its adjuvanticity with a split-type pandemic H1N1 (pH1N1) Ag by subjecting the mice to lethal homologous influenza challenge. Oral PAG administration with the pH1N1 Ag increased survival rates in mice to levels similar to those of alum and MF59, which are currently used as adjuvants in influenza vaccine formulations.Similarly, oral PAG administration improved the survival of mice immunized with a commercial trivalent influenza vaccine against lethal homologous and heterologous virus challenge. PAG also increased hemagglutination inhibition and virus neutralization Ab titers against homologous and heterologous influenza strains following immunization with the split-type pH1N1 Ag or the commercial trivalent vaccine. Therefore, this study demonstrates that PAG may potentially be used as an adjuvant for influenza vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL